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ABSTRACT

For the importantance of the Stasheff polytopeiffeent area of mathematics and the relationskigvben them
we studied the Stasheff polytope and the permutoimedh view of combinatorial and algebra using thethod that
computer the coordinate of their vertices. Theti@iship between the associahedron and the permditoh are also

explained with the aid of graph theory.
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INTRODUCTION

The Stasheff polytopE™ (associahedron), appeared in the sixties of thd dion of Stasheff on the recognition
of loop space, [9].

The associahedroki™ is the convex hull of points for the vertices bétassociahedron which represented by
planar binary tre&, with (n+1) leaves. Lef,, be the symmytric group and M) = (6(1),...,0(n)) € R™. The convex
hull of the points M §), for ¢ € S, represent (n-1) — dimensional polytope denotedPBy! and called it the
permutohedron.

In the Euclidian spacB™ the coordinates of a point are denotedcpy..., x,,, and the hyperplane H is represented
by the equation}, x; = %n(n+1), Loday in [ 5 ] showed thaP™ ! c K" 1, (by truncation) such that the
permutahedron can be obtained by truncating thedatad simplex along some hyperplanes, one eachoted"!

(except the big cell), wher2"~! points are common vertices B*~! andP™~1, The main idea of our work is to prove

Lodays result using another method.

PRELIMIARIES
Definition (1), [1]

Let Ax < b, where & R™*%is a given real matrix, anccbR™ is a known vector. A set P ={&R% : Ax<b }is
said to be a polyhedron. A polyhedron P is bourifi¢dere exists M R*, such that]|x||< M for every xe P. Every
bounded polyhedron is said to be a polytope, as isefigure 1.

Figure 1: A Polytope
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10 Shatha Assaad Salman, Anwar Khaleel Faraj & Alaa Seeh Dawood

Definition (2), [3]
A graph G consists of two finite sets V and E ealgment of V is called vertex and each element «f €alled
edge. An edge of G represented as unordered pausrtices. A graph G is connected if every pairveftices can be

joined by a path, as seen is figure 2.

(&)

Figure 2: Graph

Definition (3), [3]

A connected graph that contains no cycles is calgde, as seen in figure 3.

Figure 3: Tree
Note (1), [6]

Let Y, be the set of planar binary trees with n intermatices, observe that there is a bijection betviberset of

trees and the set of parenthesizing of a word mith letters as shown in the following figure.

o T T T T4

(((Tory)Ea)(Tara))

Figure 4: Parenthesizings
Definition (4), [4]

Let S, be the symmetric group on the set {1,..., n}. An (k) —shuffle is a permutatiowr € S,
whereo = (0 (1),...,0 (K) |0 (k+1),..., a(n)) € S, such thato(1) < o(2) <--<o(k)ando(k+ 1) <ok+2) <
o(n) where (¢(1), ..., a(n)) is the image of {1,...,n} under the permutation
Definition (5), [1]

2+l s said to be a hyper plane.

A set of points X Hx;} for i = {1,...,n} which satisfie;[-; x;=

PLANAR BINARY TREES

Now, some definitions and properties for the plasiaary trees are given below:
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Definition (6), [4]

A planar tree is an oriented graph drawn on a plavith only one root. Its binary if any root is ualent

(one root and two leaves).
Note (2), [4]

Let Y, be the set of all planar binary trees with (n#€gves, with n interior vertices The number of elenie Y,

is the Catalan numbér, = (2n)! / (n! (n+1)!).
Example (1), [4]

For the planar binary trees,

=13 }"s={ \I'/ } )'-'3={ \7 _ \%;M }
& S b o N -
¥ — { \‘-ﬂl,-' , \<\T,--' . -\\T_»y . \\I?»- ;S } |
The Catalan number of each themajs= 1,¢; = 1,¢, = 2,and ¢; = 5.
Definition (7), [2]
A leveled tree (or ordered tree) is a planar biregg such that each node must be on distinct twatiat level.
Example (2), [4]
Let Y; be the set of all binary trees as given below:

F ' F 7 F : k ¥ 4 \.,/
n=! ¢/ \’ NANY L Y
' i 4 - Y

| |

Then the leveled and un leveled tree are showigoyef 5

o

S \(v .

1

(Un Level) (Level)

Figure 5: Level and un Leveled
Note (3)

Let T;, be the set of all leveled trees with n+1 leaves mmodes, then the number of treegjns n!, [ 6 |; as

given in example (3.3).
Example (3), [2]

ForT; the number of leveled trees with 4 leaves is &tviaire

n=( Y Y Y YV
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Note (4)
For any leveled tree one can associated a permuthi labeling the vertices from 1,2,3,...,n accogdio the

level. Then the permutation is the leveled numbamfleft to right.
Example (4), [4]

For the leveled trees

LN

The permutations are (231) and (132) respectively.
Definition (8), [4]

The grafting (p+qg+1)-tree is the joining for theot® of p- treeT; and a g- tred, that create a new root.

For instance,

Definition (9), [5]

LetT;,* be the set of planar trees with n+1 leaves (and one root) such that the valence of eachriatefertex

is at least 2, an@l,” =T, ;" U... U T,,,," whereT, ,* made of the planar trees which have n — k + Trialevertices.

Example (5), [5]

To = {I}. T|=|-‘| I :r}:[\lz--". A, \L_rl
Definition (10), [5]

Atree tis said to be a refinement of the treié t ' can be obtained from t by contracting to a pamntsome of the

internal edges, any treeTh,,_, " is of the form

0 r—1 r r+k r+k+1 n

THE ASSOCIHEDRON K"
In this section we the represent the trees asra poR™ with integral coordinate using the following steps
* Numbered the leaves of t from left to right by 21..,n.

* Numbered the internal vertices from 1 to n. 3. Repnted the number of leaves on the left side;byf the
vertex i, and represented the number of leaves ohe tright side by, so
M(t) = (a, by, ...,a; by, ...,a, b)) € R™.
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Different Realizations of the Stasheff Polytope 13

The following example represents how to convesd teea point irR™.

Example (6), [6]

Note (6), [7]

The associahedron of dimension n is the convexdiulie point M(t) for all planar binary trees with+1) leave.

nn+1)

The sum of the coordinate for M(t) is Y-, x;= , So the associahedron lies in the hyper planengbse this

equation, that is for any treestY,, the coordinates of the point M(tys( ...., x,, )€ R™ satisfy the relatio}j-; x; = n("z“)

Hence M (t)€H.

As an example is given by figure (6), [8]

<
& | (1,2,3)
(21.3) #88 R
N (1.4,1)
-
(31,2) ==
4 \...
(3.2,1)
\.\PV
5

Figure 6: The Associahedron

THE PERMUTOHEDRON P!

Another example of a polytope related to a combinal structure is the permutohedron. An elemerih the

symmetric groufs,,, a associated to the point &)(which is equal tof (1),...,a (n)) € R™.

The permutohedroR™ ! is a convex hull of all points Mj for all ¢ € S,,. The sum of coordinates is

n _ n(n+1)
i=1% = T

So the permutohedron lies in the hyperplane giventhe above equation [7]. As axample is given by
figure (7)

.
& = (1,2,3)
<>
21.3) :
¢ 2 7 (1,3,2)
N d / =
(3,1,2) ~* 231
s -
/ (3.2.1) il
- N
y

Figure 7: The Permutohedron
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RELATING THE PERMUTOHEDRON AND ASSOCIAHEDRON
The main purpose of this chapter is to prove Lodagslt using another way.
We need the following lemma to prove our theorem.
Lemma (1), [4]
There is a subjective map frafp to Y,,.
Note (7)
The subjective map given in lemma 1 convert everyruitation to a binary tree using the following,
The image of {1, ... , n } under the permutatieiis a sequence of positive integees | ..., g, ]. Hence

* Replace the largest integer in the intewwgl..., o, sayo, , by the length of the interval (which is n here ).

* Repeat the modification for the intervals, ...,0,_, and 0,4, ...,0,, until each integer has been modified,

This gives the name of tree.
» Using the grafting procedure on the name of tregetdhe tree
Now, we prove our result.
Theorem (1)
Any Permutohedro®™! is contained in the associahedéofi? for all n> 1.

Proof

Firstly, we convert the permutohedrBA™! to the set of binary treég, by lemma (1). Le@,, = {0,1}"*"! and® :
Y, = Q,, defined byd (t) = (6;,....6,_1) V t €Y, wheree; =0 (resp.; = 1) if the i th leaf of t is pointing to the left

(resp. to the right ), we code the vertices ofdhle by the elements ¢f,. The convex polytop€™~1 which is defined in

M(e)= (xq, ..., x,) fore = (€1, ..., €,-1) € Qparex; =i-e€;,_4( n-i+1) (i-1) +¢; (n-i) (i), fori=1, ..., n, [7].

Now, we truncate every point in the cube whichii®dwo levels trees and every point in the culsaiiteng from

grafting two trees and refinement in the associedredsing the hyperplanes and its dual to get émenptahedron
The following example explain theorem (7.1).
Example (7)
Let S be the symmetric group. For aay] S;, we get
S;={(123), (132), (321), (213), (312), (231) } and
(1213) = (123), (A[3) = (213), (B1)=(231), (|1)=(231), (31|2)=(312),

(11312) = (132)
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Y S; - Yz, Bylemma 1, we get

Foro = (123, theny (123) = (123) :W ,

Similarly, we set

o = (321), theny (321) = (321) y ,
o = (213, theny (213) :\V ,

o = (312), theny (312) = (312) :Y ,
o = (231), theny (231) = (131) :V ,
o = (1), theny (132) = (131) :V ,

The following planar binary tree is obtained

v, = {Y// NN N }

Now, Q; ={0,1}*>={(0,0), (0,1), (1,0), (1,1) }.

M () ={x;, x5 ,x3 }, € = (€1,€2),

X, =i-€_q(n-i+1) (i-1) +¢; (n-i) (i), fori=1, ..., n.

\V , we gete = (0,1)

x; = 1-€, (3-1+1)(1-1) +¢; (3-1)(1) = 1+0 =1,
X, = 2-€, (3-2+1)(2-1) +¢, (3-2)(2) = 2+2 =4, and
X3 = 3-€, (3-3+1)(3-1) +€5 (3-3)(3) = 3-2 =1, then

M(e)=(1,4,1), ... etc
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303 123

321 141

Figure 8: The Cube

Now,
»  Apply definition (2.5) on the set of coordinateget the hyperplane and its dual.
» Truncate every point in the cube which is giverg levels trees.

* Truncate every point in the cube resulting fromftgng and a refinement in the associahedron to thet

permutahedron.
|
|~
o | - (1,2,3)
! T -
(21.3) 7 . N
T 11.3.2)
\\}z IIIJI- -
i (33,1
F - \(;_
F [T b
g
™
Figure 9: The Permotuhedron
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